

Advanced DAB/DAB+ Receivers – Gains and Impacts

Dr. Branimir (Brana) Vojcic

November 10, 2016

How to Improve DAB/DAB+ Adoption

Improved programming

- Relevant for new generations of listeners
- New digital application overlays
- Interactive broadcast applications

Improved QoS

- Better codec
- New air-interface standard generally undesirable for broadcast systems
- Receive diversity limited applicability
- Advanced receiver design
 - Improved receiver sensitivity
 - Better coverage
 - Better user experience
 - Reduced CAPEX/OPEX

Our presentation will concentrate on gains achievable by Advanced DAB/DAB+ Receivers and their impact on DAB/DAB+ market

Conventional Receiver

- Non-coherent DQPSK
- Soft input Viterbi algorithm based convolutional decoder
- Algebraic Berlekamp-Massey Reed-Solomon (255,245) decoder
- Advanced Receiver
 - Various advanced modules that attempt to achieve theoretically achievable performance for the given air-interface

Advanced Modules

Conventional Receiver

Example 1: DAB/DAB+ in Non-fading Channels

- Reference Conventional DAB Receiver performance agrees with results reported in literature
- Advanced DAB Receiver achieves >3 dB gain (there are variants with larger gains)

- Advanced DAB+ Receiver achieves 2 dB gain
- Advanced DAB Receiver outperforms Conventional DAB+ Receiver !!!
- → Could use DAB format with DAB+ codec and Advanced DAB Receiver in new DAB markets !?

Example 2: TU Slow Fading – L Band

- Gains due to Advanced Receiver higher than in AWGN
- Advanced DAB Receiver is even better than Conventional DAB+ receiver
- Advanced DAB Receiver is slightly worse than Advanced DAB+ receiver
- Possibility of new option in DAB+: drop Reed-Solomon code
 - Improved throughput per channel for overlay applications
 - Standardization impact
 - Backward compatibility impact viable in new markets

Example 3: RA Fast Fading – L Band

- In other fading scenarios gains typically between examples 2 and 3
- Larger gains with interference
- Gains vary with frequency bands, vehicle speeds, market types, station configurations, ...
- Gains due to Advanced Receiver could be sliced in different ways to improve:
 - Coverage
 - User satisfaction
 - Reduce CAPEX/OPEX ...

Impact of Advanced Receiver Gains

- Consider 3 dB gain on average over different scenarios
- Could reduce Tx power by 2 \rightarrow significant cost savings
 - Cheaper transmitters
 - Smaller electricity costs
 - "Greener" spectrum

• Alternatively, keep Tx power fixed

- Improved reliability of service and user experience less frequent reception errors by orders of magnitude
 - improved adoption by consumers → economies of scale → improved adoption by consumers ...
 - Increased revenues for chip/receiver manufacturers, broadcasters, ...
- Improved coverage
 - Smaller number of transmitters Reduced CAPEX/OPEX
 - More PoPs → Increased advertising revenues
- Small Costs & High Benefits of Advanced DAB/DAB+ Receivers
- Accelerated DAB/DAB+ adoption worldwide