Technical business case for DAB+

Dr. Les Sabel S-Comm Technologies and WorldDAB Technical Committee

Technical business case

1. Radio distribution costs

2. Use of 5G technologies

Radio distribution costs

- There are several technologies available for the delivery of radio program content
- There have been several studies on the cost efficiency of broadcast vs other technologies to provide content the listeners
- Most of these focus on the 'technical' cost of operating distribution systems BUT we must also remember that it is the duty of broadcasters to provide content / coverage to all listeners in the prescribed coverage area.
 - This is particularly the case for Public Service Broadcasters who have a duty of care to provide service to the most compromised listeners whether that is through location or cost issues

Radio distribution costs

Gates Air analysis

- The results from the 2019 presentation at the ASBU / ABU / AIBD / WorldDAB workshop in KL
 - Based on requirements to cover an area with a radius of 25* km with an antenna system with the same tower aperture Gates-Air study

	Transmitter	FM	DAB+
	Number of transmitters	18	1
,000 USD	CAPEX: Cost of transmitters	900	80
,000 USD PA	OPEX		
	Power	328	6.57
	Cooling	92	3.33
,000 USD PA	Total OPEX	420	~10

• These costs exclude floor space, antenna space and maintenance all of which are more expensive for 18 transmissions rather than 1

Radio distribution costs

Update to DAB v FM

- Coverage analysis shows that the ERP for the same coverage is approximately the same
- FM antenna system is assumed to be ½ gain of DAB due to having twice the wavelength
- Coverage at 1.5m: DAB at 50 dBuV/m (vehicle) vs FM at 44 dBuV/m (rural stereo)
 - 10 kW ERP => coverage radius of approx. 30 40 km

	Transmitter	FM	DAB+
	Number of transmitters	18	1
,000 USD	Tx power (kW)	2	1
,000 USD PA	OPEX		
	Power	65.5	2.9
	Cooling	17.2	0.9
,000 USD PA	Total OPEX	82.7	3.8

FM costs over 20x DAB!

 These costs exclude floor space, antenna space and maintenance all of which are more expensive for 18 transmissions rather than 1

Radio distribution cost analysis

EBU analysis

DAB is cheaper to operate than FM or IP

DAB+ and IP

Based on the EBU model country of 72m people the analysis shows that 10% of traffic via IP costs similar to 100% traffic by DAB+

Radio distribution in Norway

NRK the national broadcaster in Norway went from 2000 FM transmitters to 1050 DAB transmitters while increasing the number of national stations from 3 to 15+

- The operating cost of the DAB+ and old FM system is approximately the same, hence the cost of the DAB+ service is approximately 1/5 of FM
- The cost of establishing the DAB+ system including DAB+ transmitters, new VHF Band III antenna systems and support equipment is amortised into the DAB+ Opex cost further showing a significant cost reduction

Source: NRK 2020

Radio distribution via IP

- NBN rollout in SE Australia is limited to cities and towns
- Using wired IP is not currently feasible to deliver IP streaming to homes outside towns

Radio distribution via mobile

Telstra mobile coverage

- Good city and town coverage but still lack of coverage in many regional areas
- Broadcasting is required to provide services to regional and remote listeners

5G – where does radio fit?

5G applications

"5G" is an evolution from 4G

New technologies are gradually being rolled into the existing LTE/4G mobile ecosystem to provide improvements in:

- Increased speed
- Improved reliability and QoS
- Lower latency

Individual radio streaming

5G Application space - radio

5G provides improved solutions for

- Massive machine comms for IoT mMTC
- Ultra reliable and low latency for IoT URLLC
- Ultra high bit rate mobile broadband eMBB

All extensions and capabilities are NOT available at the same time

Source: Rhode & Schwarz

5G for contribution

Contribution

- 5G capacity increases and network slicing technologies will provide new opportunities for broadcaster contribution networks
- More capacity in cities and towns
- Controlled QoS for mission critical links, e.g.
 Outside Broadcast links or Studio to Transmitter links

BUT

- Very high capacity links will rely on 3.6 or 26 GHz spectrum which have shorter range than 900 MHz band
- Still waiting for the Network Slicing / QoS functionality to be standardised for the Physical Layer (i.e. the Radio link)
- Still waiting for the business model to be defined

e.g. mission critical backup link to a Tx site

5G for distribution

Distribution

- eMBB in cities and towns will reduce the overall % load for streaming
- 5G capacity increases are primarily due to the use of very high frequencies:
 - High bandwidth channels such as 50/100 MHz are only available in the 3.6GHz and 26/39 GHz bands
 - High frequencies have much greater path loss and hence much smaller coverage areas
 - Capacity increases rely on the use of High Order modulation such as 256 QAM which is not robust for mobile reception
- To deliver radio in wide coverage areas low frequencies (700 900 MHz band) will be required
 - This band will already be stretched to deliver eMBB services over wide areas
 - To achieve similar coverage and robustness to DAB+ similar MCS will required
 - NB-IoT has a range of approx. 10 km
 - Most receivers will not have Line of Site to the transmitter
 - The use of current individual links will consume significant capacity
 - The use of multicast and broadcast is still being defined by 3GPP / 5GPP / 5G-Xcast
 - Few receivers
 - No cost models available (yet)

Spectrum implications

26/39 GHz is limited to micro / pico cells with max range of approx. 0.5 km

3.6 GHz micro cells with range up to a few km max

Significant distance loss impact at high frequencies and long distances

Sub 1 GHz band still needed for macro cells and wide area coverage

Increased demand due to push for higher bit rates

$$P_R = \frac{P_T G_T G_R \lambda^2}{(4\pi d)^2} \qquad FSPL = \left(\frac{4\pi df}{c}\right)^2$$

RF path loss due to frequency and

10 km path loss = **111dB**

Spectrum implications

- The acquisition of sub-700 MHz spectrum was not discussed in the World Radio Conference 2019 – WRC19
 - Current mobile frequency bands of operation are listed from 450 MHz and higher
 - The implication is further compression of terrestrial DTV in UHF
 - Spectrum sharing
 - Pushing DTV into VHF bands
- VHF Band III spectrum is very valuable.
- Compression in UHF bands threatens the ability of DTV to both increase content offerings and video resolution – strong competition from UHD IP services.
- The loss of spectrum for terrestrial DTV has potential to threaten the capacity available for DAB+ in VHF Band III

Conclusions

DAB is the most cost effective transmission system for radio with significant cost savings over FM

5G will provide new **contribution** capabilities for broadcasters enabling feature rich multimedia radio services

5G will not provide a cost effective **distribution** mechanism for critical audio delivery, especially in wide area and rural situations

5G / 4G / IP will provide effective mechanisms for non-critical hybrid radio multimedia content

Broadcasters need to protect VHF Band III for DAB+ radio

Hybrid DAB+ with 5G: the most cost effective delivery of multimedia radio offers exciting new functionality and interactivity for listeners and advertisers

Thank You

www.worlddab.org

les.sabel@scommtech.com.au

