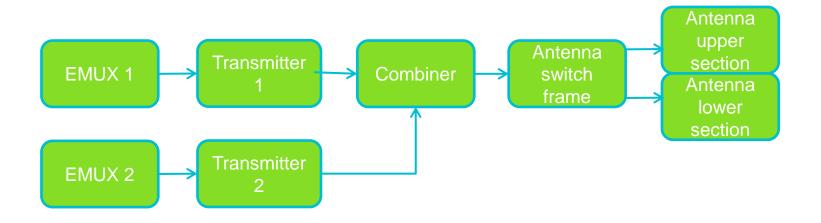
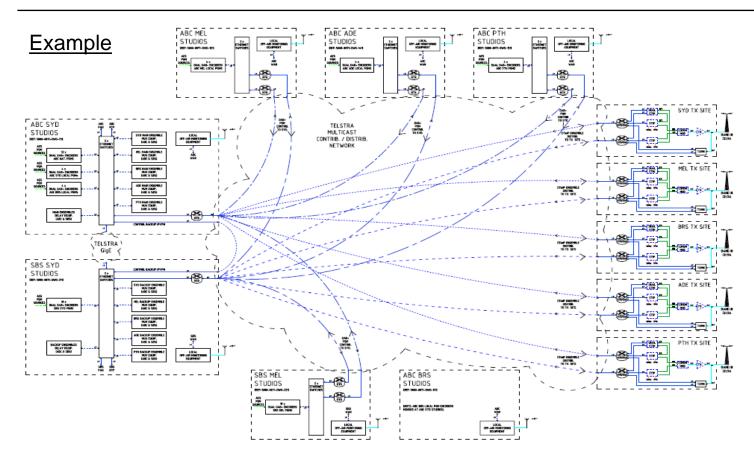
Overview of transmission systems

Dr. Les Sabel S-Comm Technologies and WorldDAB Technical Committee


DAB+ System Structure

- 1. Transmission system overview
- 2. Monitoring Systems


Overview

Main system blocks

ETI / EDI

Modulation and coding

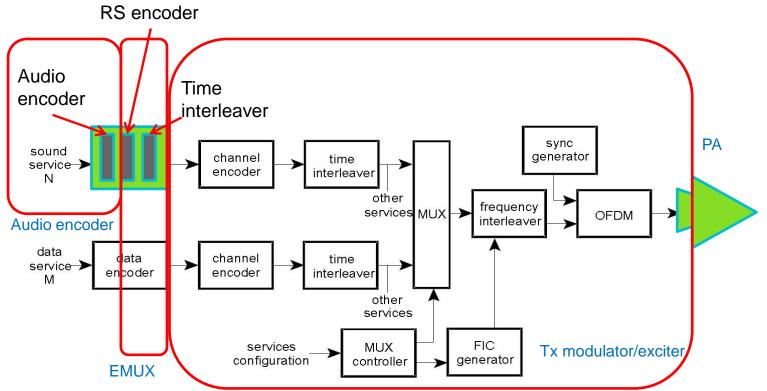
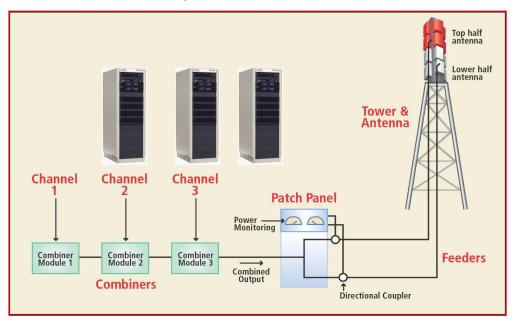


Figure 4.3.1: Conceptual block diagram of the EUREKA DAB system transmitter drive

Forward Error Correction

Forward Error Correction (FEC) codes are applied per sub-channel


Comparative performance

FEC Code	Code	Capacity	Number of 64kbps	Approximate power
	Rate	(kbps)	channels	required relative to
				3A
1A	1/4	576	9	-3 to -6dB
2A	3/8	864	13	-2 to -3dB
3A	1/2	1152	18	0
3B	2/3	1536	24	+3dB
4A	3/4	1728	27	+6dB

Signal flow

Antenna system

Example antenna switch frame / patch panel and combiner modules

DAB critical transmission mask

DAB spectrum mask

Signal bandwidth = 1536 carriers at 1kHz each => 1.535MHz Channel bandwidth = 1.712 MHz

 $10 \log(1536 \text{ kHz} / 4 \text{ kHz}) = -25.84 \text{ dB}$

The mask filter is designed to allow multiplexers to operate in immediately adjacent frequency blocks, e.g. 9A and 9B

Areas with adjacent channel usage require the critical mask

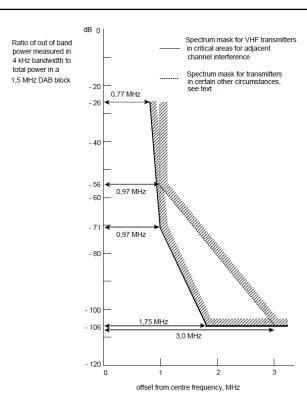
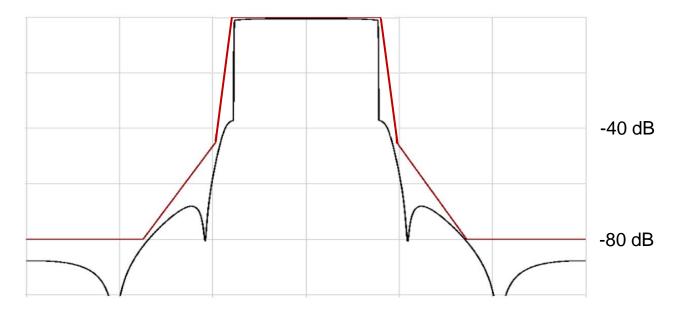


Figure 66: Out-of-band spectrum mask for DAB transmission signal (all transmission modes)

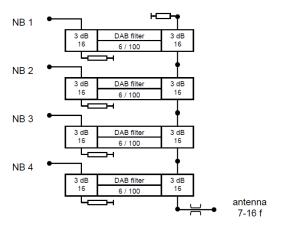
Simple single filter

Tx spectrum before and after the mask filter


Improved shoulder distance after filter

Source: Gates Air

DAB critical transmission mask


Example output spectrum after the mask filter

Combiners

Combiners allow multiple transmission signals to be 'combined' with low loss and suitable DAB mask filtering

insertion lo	return loss					
$f_{0-0,77 \text{ MHz}}$	f_0	f _{0 + 0,77 MHz}	16101111055			
2,6	1,3	2,6	≥ 26 dB			
2,3	1,0	2,3	≥ 26 dB			
≥ 0						
> 40 ± 5 dB						
	f _{0 ± 0,97 MHz}	f _{0 ± 1,75 MHz}	f _{0 ± 3 MHz}			
	≥ 15	≥ 45	≥ 53			

Typical design

Source: Spinner

High Power High Tower - Antenna systems

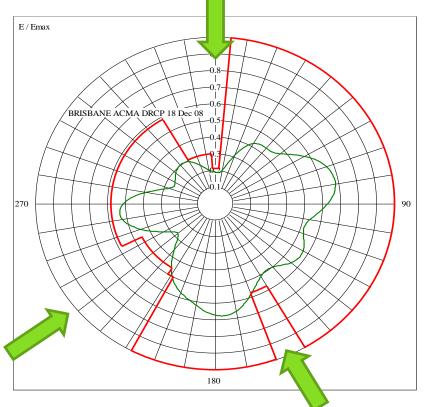
Examples

Band III antenna at Artarmon site in Sydney

Transmission tower at Mt Wellington, Hobart has a full raydome due to extreme weather conditions

Antenna systems

- DAB+ Signals are vertically polarised
- TV Signals are usually horizontally polarised
- Beam Tilt techniques can be employed in Vertical Radiation Pattern to allow higher ERP and more efficient Co-Channel reuse
- Photo of combined Band III TV & DAB+ antenna at Mount Lofty in Adelaide



Antenna patterns – high complexity

Brisbane EMAX vs. ERP

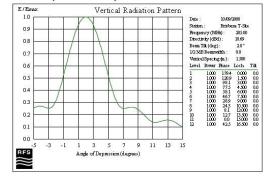
Variation to the DRCP - Engineering Report for Brisbane

6.2. Appendix 2 DAB Antenna Specification

Following are the antenna technical details for the proposed Brisbane DAB antenna system identified in this report as 'Ant-Spec-11Sep 08'.

Transmission site: Service: DAB Site ID: 12749

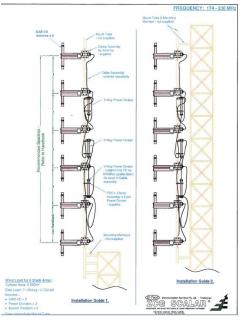
Site name: Channel 10 Site MOUNT COOT-THA

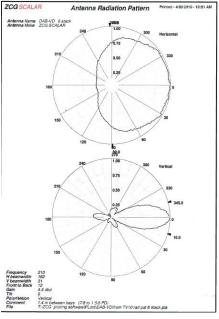

Antenna details: ERP: To be determined

Antenna height: 191.7 metres

Site height: 207 metres (DEM 9 arc-second) Antenna specification: As follows:

-ig---i----1---110.g---00


RF network and antenna design must consider interference and well as coverage



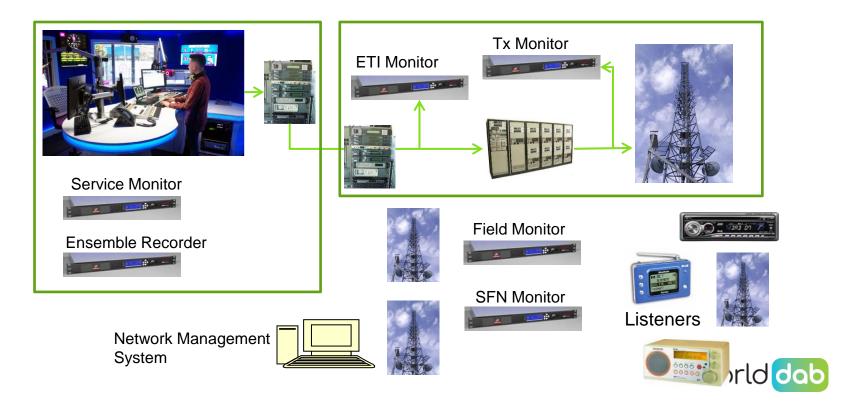
Lower Power transmissions

Medium power transmissions are used extensively in Europe and UK where most main sites are 5 - 10 kW. Repeater / infill sites can be from 100W to 5 kW depending on the coverage requirements and SFN compatibility.

These sites generally use dipole antennas as the are much cheaper and lighter.

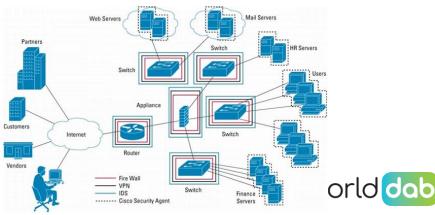
Yagi antenna example approx. 4.5 dBd gain

Monitoring systems


Overview

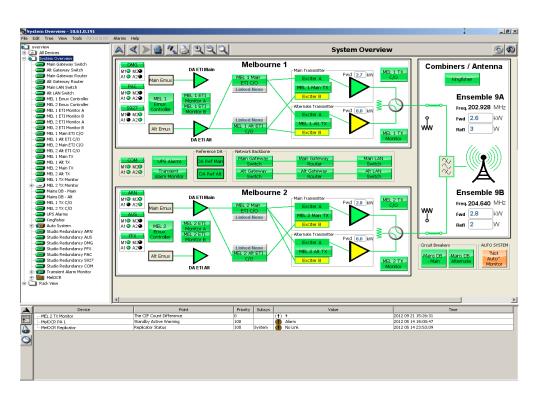
- Content delivery
- Control and monitoring

Control and monitoring


Monitoring equipment

Control and monitoring

- Network Management Systems
 - Lots of options
 - SNMP basis
 - Physical relay systems reducing
- Equipment control and configuration
- Remote observation
- Remote maintenance
- Operational history and recording
 - Fault analysis
- MSTS for system access and control



Control and monitoring

Network Management Systems

Icon based mimic diagrams can help NMC staff quickly identify issues

Systems should be designed to allow remote access via web interfaces to ensure rapid response times

Summary

- Transmissions systems need to be engineered to meet the business demands for
 - Coverage and interference
 - Reliability
 - Performance and cost effectiveness
- Monitoring systems are essential to ensure appropriate system operation
 - Reliability
 - Fault detection and recovery
 - Ongoing operations and feature updates
 - Future proofing the business

Thank you

For further information, please contact:

www.worlddab.org

or

les.sabel@scommtech.com.au

